SYNTHESIS OF N-(2-CHLORO-5-BROMO-4-PYRIMIDYL)-AND N-(2-CHLORO-5-IODO-4-PYRIMIDYL)AMINO ACIDS

I. Ya. Ulane and M. Yu. Lidak

UDC 547.853'466.07:543.422.6'544

The previously unreported N-(2-chloro-5-bromo-4-pyrimidyl)- and N-(2-chloro-5-iodo-4-pyrimidyl)amino acids were synthesized.

Continuing our investigations of the potential antimetabolites of nucleic acid-protein metabolism, we have undertaken the preparation of N-(5-bromo-4-pyrimidyl)amino acids. We have previously reported [1] the synthesis of derivatives of N-(5-fluoro-4-pyrimidyl)amino acids, which did not display pronounced activity against experimental strains of malignant tumors [2]. There is currently little known about the biochemical activity of derivatives of 5-bromopyrimidines, and there are only indications that 5-bromouracil, like 5-iodouracil, may be partially included in DNA in place of thymine and may thus have an inhibiting action on the sequence of protein synthesis [3, 4]. The known antitumorigenic activity of some 5-bromouracil derivatives has also been pointed out [5, 6]. The synthesis of N-(2-chloro-5-bromo-4-pyrimidyl)amino acids (II-X) and N-(2-chloro-5-iodo-4-pyrimidyl)amino acids (X-XIV) can be readily accomplished by the reaction of 2,4-dichloro-5-bromo (iodo) pyrimidine with amino acid salts [9]. The reaction proceeds only at the chlorine atom in the 4-position of the pyrimidine ring; this chlorine is much more reactive than the chlorine atom in the 2-position, which is under the influence of two adjacent nitrogen atoms. The bromine or iodine atom, by virtue of its inductive effect, increases the reactivity of a halogen in the ortho position with respect to nucleophilic reagents. Compounds II-XIV are crystalline substances. Data regarding their constants and yields are presented in Table 1. The structures of the compounds can be readily proved by alternative transformations. The compounds obtained display the absorption characteristic for pyrimidine compounds in the near UV region.

We prepared the sodium salts of II-XIV for physiological tests.

EXPERIMENTAL

2,4-Dichloro-5-bromopyrimidine and 2,4-Dichloro-5-iodopyrimidine. These were obtained by the methods in [7, 8].

Institute of Organic Synthesis, Academy of Sciences of the Latvian SSR, Riga. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 4, pp. 527-529, April, 1971. Original article submitted December 2, 1969.

© 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for \$15.00.

TABLE 1. Characteristics of the Compounds Obtained

Calculated, %	H N sen %		49 14,98 41,15 31,5	06 13,09 35,76 38,8	06 13,09 35,76 40,6	59 13,61 37,39 48,7	56 13,59 37,40 31,3	26 12,34 — 38,2		05 14,16 29,15 48,1	14,16 29,15 13,09 35,76	14,16 29,15 13,09 35,76 15,76 43,37	14,16 29,15 13,09 35,76 15,76 43,37 11,37 —	14,16 29,15 13,09 35,76 15,76 43,37 11,37 —	14,16 29,15 13,09 35,76 15,76 43,37 11,37 — 11,37 —
Calcu			29,95 2,49	37,22 4,06	37,22 4,06	35,03 3,59	34,95 3,56	31,74 3,26		45,53 3,05					
	halo-		41,12 29,	35,67 37,	35,69 37,	37,00 35,	37,92 34,	- 31,	-	29,39 45,					
Found, %	halc N gen	0	15,10 41	13,32 35	13,26 35	13,92 37	13,63 37	12,67		14,29 29					
Foun C H			2,85	4,39 13	4,14 13	3,87 13	3,53 13	3,39 12	3.21 14	_					
			30,23	37,45	37,11	34,91	34,55	32,13	46,15		37,67				
Empirical formula			243(3,99) 248(3,85) C ₇ H ₇ BrClN ₃ O ₂	248(3,74) 250(3,79) C ₁₆ H ₁₃ BrCIN ₃ O ₂	248(3,75) 248(3,68) C ₁₆ H ₁₃ BrCIN ₃ O ₂	250(3,78) 250(3,74) C ₉ H ₁₁ BrCIN ₃ O ₂	250(3,79) 250(3,84) C ₉ H ₁₁ BrClN ₃ O ₂	250(3,81) 250(3,62) C ₉ H ₁₁ BrClN ₃ O ₂ S†	253 (4,03) 253 (4,12) C ₁₅ H ₁₂ BrCIN ₄ O ₂		245(4,24) 250(3,66) C ₁₀ H ₁₃ BrCIN ₃ O ₂	250(3,66) C ₁₀ H ₁₃ BrCIN ₃ O ₂ 250(3,75) C ₆ H ₅ BrCIN ₃ O ₂	250 (3,66) C ₁₀ H ₁₃ BrCIN ₃ O ₂ 250 (3,75) C ₆ H ₅ BrCIN ₃ O ₂ 245 (3,57) C ₁₀ H ₁₃ CIIN ₃ O ₂	250(3,66) C ₁₀ H ₁₃ BrCIN ₃ O ₂ 250(3,75) C ₆ H ₅ BrCIN ₅ O ₂ 245(3,57) C ₁₀ H ₁₃ CIIN ₅ O ₂ 250(3,67) C ₁₀ H ₁₃ CIIN ₅ O ₂	250(3,66) C ₁₀ H ₁₃ BrCIN ₃ O ₂ 250(3,75) C ₆ H ₅ BrCIN ₅ O ₂ 245(3,57) C ₁₀ H ₁₃ CIIN ₅ O ₂ 250(3,67) C ₁₀ H ₁₃ CIIN ₅ O ₂ 248(3,66) C ₉ H ₁ CII N ₅ O ₂
ption at 1	pH 7 (H ₂ O) pH 13 (0.1N NaOH)	1 Amax (1g 8)	248(3,85)	250(3,79)	248(3,68)	250(3,74)	250(3,84)	250(3,62)	253(4,12)		250(3,66)	250 (3,66) 250 (3,75)	250 (3,66) 250 (3,75) 245 (3,57)	250 (3,66) 250 (3,75) 245 (3,57) 250 (3,67)	250 (3,66) 250 (3,75) 245 (3,57) 250 (3,67) 248 (3,66)
UV absorption at 250 nm	pH 7 (H ₂ O)	λ _{max} (1g ε)	243 (3,99)	248(3,74)	248(3,75)	250 (3,78)	250 (3,79)	250(3,81)	253 (4,03)		245(4,24)	245(4,24) 260(3,85)	245 (4,24) 260 (3,85)	245 (4,24) 260 (3,85) —	245(4,24) 260(3,85) —
•	$n-C_4H_9OH$ sat. with H_9O+ sev.	drops NH4OH Amax (Ig E) Amax (Ig E)	0,468	0,686	0,712	0,635	0,074	0,594	0,610		0,714	0,714 0,379	0,714 0,379 0,810	0,714 0,379 0,810 0,764	0,714 0,379 0,810 0,764 0,764
n the syster	Rf in the syster n-C.H.O.H. C.H.O.H. H.O. H.O. 5:1:4		606'0	0,944	0,952	0,935	0,933	0,927	0,931		0,951	0,951	0,951 0,884 0,984	0,951 0,884 0,984 0,990	0,951 0,884 0,984 0,990 0,950
Rf in			0,794	806,0	0,830	0,919	0,901	0,872	0,944		0,965	0,965	0,965 0,741 0,826	0,965 0,741 0,826 0,860	0,965 0,741 0,826 0,860 0,860
	Comp Mp. °C (dec.)		162	191	120-122	162	158	154—156	162	_	145	145	145 170 100	145 170 100 178	
Сотр		H	III	IV	^	VI	VII	VIII	,	X	<u>x</u> x	<u> </u>	× × × ×	X X II II X	

* The R $_f$ values were determined by means of ascending chromatography on "Leningrad B" paper. † Found %: S 9.79. Calculated %: S 9.41.

N-(2-Chloro-5-bromo-4-pyrimidyl)-DL-alanine (II). A mixture of 2.4 g (0.06 mole) of sodium hydroxide in 50 ml of water, 2.72 g (0.03 mole) of DL-alanine, and 6.0 g (0.026 mole) of Ia was refluxed until everything dissolved (~5 h), the solution was cooled with ice, and 5 ml of glacial acetic acid was added dropwise. Crystals precipitated after 5-10 min. The solution was allowed to stand at room temperature for 12 h, and the precipitate was filtered, washed with cold water, and dried to give a colorless compound which was reprecipitated from aqueous alkaline solution with glacial acetic acid.

Compounds II-X were similarly obtained.

N-(2-Chloro-5-iodo-4-pyrimidyl)-L-Leucine (XI). A mixture of 0.4 g (0.01 mole) of sodium hydroxide in $\overline{25}$ ml of water, 0.65 g (0.005 mole) of L-leucine, and 1.3 g (0.005 mole) of Ib was refluxed until everything dissolved. The solution was cooled with ice, and glacial acetic acid was added dropwise to precipitate crystals of the product. The mixture was allowed to stand at room temperature for 12 h. The precipitate was filtered, washed with water, and dried to give a yellowish substance which was purified by repeated precipitation from aqueous alkaline solution with glacial acetic acid.

Compounds X-XIV were similarly obtained.

LITERATURE CITED

- 1. R. A. Paégle, M. G. Plata, and M. Yu. Lidak, Khim, Geterotsikl. Soedin., 475 (1966).
- 2. A. A. Zidermane, I. M. Kravchenko, I. Ya. Ulane, and M. Yu. Lidak, Farmakol. i Toksikol. (1971) (in press).
- 3. J. W. Littlefield and E. A. Gould, J. Biol. Chem., 235, 1129 (1960).
- 4. F. Weygand, A. Wacker, and K. M. Patil, Chem. Ber., 89, 475 (1956).
- 5. R. Brossmer, and D. Ziegler, Z. Physiol. Chem. (Hoppe-Seyler), 4, 350 (1969).
- 6. C. Hong, C. Piantadosi, C. Chae, and J. Irvin, J. Med. Chem., 11, 6 (1968).
- 7. N. Whittaker, J. Chem. Soc., 1646 (1953).
- 8. M. Prystaš and F. Sorm, Coll. Czech. Chem. Comm., 291 (1964).
- 9. Yu. P. Shvachkin and M. K. Berestenko, Zh. Obshch. Khim., 33, 2842 (1963).